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Large-scale association study on daily 
weight gain in pigs reveals overlap of genetic 
factors for growth in humans
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Abstract 

Background:  Imputation from genotyping array to whole-genome sequence variants using resequencing of 
representative reference populations enhances our ability to map genetic factors affecting complex phenotypes in 
livestock species. The accumulation of knowledge about gene function in human and laboratory animals can provide 
substantial advantage for genomic research in livestock species.

Results:  In this study, 201,388 pigs from three commercial Danish breeds genotyped with low to medium (8.5k to 
70k) SNP arrays were imputed to whole genome sequence variants using a two-step approach. Both imputation 
steps achieved high accuracies, and in total this yielded 26,447,434 markers on 18 autosomes. The average estimated 
imputation accuracy of markers with minor allele frequency ≥ 0.05 was 0.94. To overcome the memory consumption 
of running genome-wide association study (GWAS) for each breed, we performed within-breed subpopulation GWAS 
then within-breed meta-analysis for average daily weight gain (ADG), followed by a multi-breed meta-analysis of 
GWAS summary statistics. We identified 15 quantitative trait loci (QTL). Our post-GWAS analysis strategy to prioritize of 
candidate genes including information like gene ontology, mammalian phenotype database, differential expression 
gene analysis of high and low feed efficiency pig and human GWAS catalog for height, obesity, and body mass index, 
we proposed MRAP2, LEPROT, PMAIP1, ENSSSCG00000036234, BMP2, ELFN1, LIG4 and FAM155A as the candidate genes 
with biological support for ADG in pigs.

Conclusion:  Our post-GWAS analysis strategy helped to identify candidate genes not just by distance to the lead 
SNP but also by multiple sources of biological evidence. Besides, the identified QTL overlap with genes which are 
known for their association with human growth-related traits. The GWAS with this large data set showed the power to 
map the genetic factors associated with ADG in pigs and have added to our understanding of the genetics of growth 
across mammalian species.
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Background
The number of genome-wide association studies (GWAS) 
has grown rapidly over the last decade to establish a link 
between genetic variants and complex traits in humans 

and agricultural species. Genotype data for GWAS are 
usually generated using cost-effective genotyping arrays 
of common single nucleotide polymorphism (SNP) vari-
ants. The use of imputed whole-genome sequencing 
(WGS) is routine in human GWAS [1] due to the avail-
ability of whole-genome haplotype reference panels. A 
similar reference panel for cattle is available and rou-
tinely used in cattle GWAS studies [2, 3]. However, the 
imputation of a SNP array to WGS for GWAS in pigs is 
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still not common. One reason could be the absence of an 
international haplotype panel in pigs. Imputation from a 
low-density marker set to a high-density marker set, and 
even up to WGS level, has shown high accuracy at an 
affordable cost for large-scale GWAS [3–6] and investiga-
tion of the genetic architecture of complex traits [7–9]. 
Normally, the reference panel for imputation requires a 
large number of individuals. However, the whole genome 
sequencing of many animals is still economically pro-
hibitive. A previous study [10] showed the advantage 
of a two-step imputation strategy in cattle, where step 
1: impute a low-density (50k) SNP array marker set to 
a high-density (700k) SNP array marker set; and step 2: 
impute the imputed high-density marker set to WGS. 
Brøndum et al. [11] showed that a multi-breed reference 
panel can increase imputation accuracy in cattle. Both 
strategies, namely the two-step imputation and multi-
breed reference population, can also be used to increase 
imputation accuracy in other livestock species like 
pigs. Unlike pure breeding in dairy cattle, two-way and 
three-way crosses are routinely used to produce slaugh-
ter pigs. Although we know that multi-breed reference 
could improve imputation accuracy, it is worth examin-
ing whether available high-density (HD) genotypes from 
crossbred pigs can be used as the intermediate reference 
panel for purebred pigs.

The growth rate is an important trait in pig breeding, 
as it is directly linked to economic returns. Average daily 
gain (ADG) is one of the most important indicators of the 
growth rate and indicates the time required for pigs to 
achieve the targeted market weight [12]. Previous stud-
ies have shown the complex genetic architecture of ADG 
[13], which puts a limit on how precisely the quantitative 
trait loci (QTL) can be determined. Approximately 753 
QTL for ADG spread across all chromosomes in pigs are 
reported in the QTL database (queried in July 2020) [14]. 
Recently, Falker-Gieske et  al. performed GAWS using 
imputed WGS to identify QTLs on chromosome 2, 4 and 
7 for ADG [15]. Similarly, a larger number of genetic fac-
tors affecting growth-related traits in humans and other 
mammalian species are known [3, 16, 17]. Therefore, 
precise mapping of genetic factors for ADG in pigs could 
highlight the common genetic factors affecting growth 
in humans and other mammalian species. Furthermore, 
in pig breeding, mapped WGS variants, if included in a 
genomic selection marker panel, may increase the pre-
diction accuracy for ADG [18].

The knowledge gained from non-human species could 
bring new insights for human studies. Mice are one com-
mon model species for human research [19, 20], but the 
scale of species could expand to other rodent species 
[21]. Researches have used model species to study spe-
cific human diseases, e.g., ferrets, as a model for human 

respiratory disease [22], and sheep as a model for human 
asthma and other respiratory diseases [23]. Similarly, 
for quantitative traits, meta-analysis of cattle stature 
revealed the genetic similarity between human height 
and cattle stature [3]. A pig model is used to study several 
human traits [24–27]. Therefore, the mapping of genetic 
factors for ADG in pigs could be utilized to add to our 
knowledge about growth traits in humans.

The aim of this study was to detect the WGS variants 
associated with ADG in pigs, and to study whether the 
candidate genes underlying these associated variants 
in pigs for ADG are known for their association with 
growth-related traits in humans. To achieve this goal, we 
used phenotypes and SNP array genotypes from 201,388 
animals from three Danish pig breeds. We divided each 
breed into subpopulations to run GWAS and then car-
ried out a within-breed meta-analysis, followed by a 
multi-breed meta-analysis. In the post-GWAS analyses, 
we examined whether the identified candidate genes in 
pigs are known to be related to growth-related pheno-
types in humans.

Results
Imputation to WGS level
After imputation of SNP array genotyped animals to 
WGS variants, we obtained 26,447,434 markers on 18 
autosomes. In this study, we used HD genotyped cross-
bred pigs as an intermediate reference. The estimated 
imputation accuracy (R2 reported by Minimac4) is com-
parable to the cattle study by Daetwyler et  al. [2]. The 
average estimated imputation accuracy for the markers 
with minor allele frequency (MAF) >= 0.05 reached 0.94. 
If the markers with estimated imputation accuracy below 
0.4 are filtered out, the average estimated imputation 
accuracy reaches above 0.9 for all MAF classes (Fig.  1). 
Moreover, as shown in Fig.  1, most of the inaccurate 
imputed markers (R2 <= 0.4) are markers with low MAF 
(0-0.05), which are very challenging to impute accurately 
due to the lack of haplotype in the reference popula-
tion. After quality filtering with MAF (0.5%) and Hardy–
Weinberg proportions (p < 10-6), the WGS marker set for 
association study was 12,596,412 for Duroc, 18,654,181 
for Landrace, and 14,522,325 for Yorkshire breeds. As the 
current computational facility available to us was limited, 
we could not run GWAS analysis including all animals 
from a breed, and we therefore adopted the strategy to 
split each of the breeds into three subpopulations, and 
then combined results using within-breed meta-analysis.

Association analysis for average daily gain in Duroc
In Duroc, we identified one QTL on chromosome 
1 in the within-breed meta-analysis (53,054,787-
54,008,032; Fig.  2, Supplementary Figs.  S1 and S4 and 
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Supplementary Table S1). Splitting into subsets of data 
based on birth years, we did not identify any QTL in 
animals born in 2015-2016 and 2017-2018 (Fig.  S1a 
and b). We only detected an association signal in ani-
mals born before 2015 (Fig.  S1c), and this is the same 
as in the within-breed meta-analysis (Fig.  2). The lead 
SNP of this association is 1: 53289914 (rs344908085) 
with -log10(p-value) = 14.30. This SNP is located in the 
intron of the MRAP2 gene, which encodes Melanocor-
tin-2 receptor accessory protein 2.

Association analysis of average daily gain in Landrace
In Landrace, we located five QTL on five chromosomes 
in the within breed meta-analysis (Fig.  3, Table  1, Sup-
plementary Figs. S2 and S5 and Supplementary Table S1). 
The strongest association signal was 1: 160174493 
(rs343467711, -log10(p-value) = 29.19) with the near-
est gene being CDH20. The second strongest association 
signal was on chromosome 12, where the lead SNP was 
12: 3639288 (rs1109299516) within the intron of TK1. 
The third-strongest association signal was 6: 146958866 

Fig. 1  Average estimated imputation accuracy across different minor allele frequencies (MAF); HD_RAW is for imputation from low-density chip to 
HD (all markers); HD_FIL is for imputation from 60 k to HD for markers with estimated imputation accuracy ≥ 0.4; WGS_RAW is for imputation from 
imputed HD to WGS (all markers); and WGS_FIL is for imputation from imputed HD to WGS for markers with estimated imputation accuracy ≥ 0.4

Fig. 2  Manhattan plot for the association of SNPs with daily weight gain in Duroc. The red horizontal line indicates a genome-wide significance 
level [-log10(p-value) = 8.5]
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(rs334716220), which was annotated as an intergenic var-
iant with LEPROT as the closest gene. On chromosome 
7, the lead SNP was 7: 21015982 (rs697892846) near to 
ABT1. On chromosome 18, the lead SNP was 18:2162425. 
This lead SNP is an intergenic variant with RNF32 as the 
nearest gene.

Association analysis of average daily gain in Yorkshire
In Yorkshire, we identified nine QTL on eight different 
chromosomes in the within breed meta-analysis (Fig.  4, 
Table 2, Supplementary Figs. S3 and S6 and Supplemen-
tary Table  S1). The strongest signal was 1:160950166 
with -log10(p-value) equal to 33.78. This lead SNP is 
an intergenic variant and the nearest gene is ENS-
SSCG00000036234. The QTL interval in Yorkshire largely 
overlapped with the QTL interval on chromosome 1 of 
Landrace, however the nearest gene in these two breeds 
are different. The second-strongest association signal 
was 12:15311500 located in the intron of TACO1. The 
other lead SNP on chromosome 12 was 12:43812683 
with NF1 as the nearest gene. The fourth-strongest asso-
ciation signal was on chromosome 17 with 17:15758097 

(rs694525579) as the lead SNP and located at the intron 
of BMP2. The lead SNP on chromosome 11 was located 
at 75,538,956 bp (rs319374568) which is within the cod-
ing sequence of LIG4. On chromosomes 3, 4, 7 and 13, 
we also found association signals with ELFN1, RB1CC1, 
ENSSSCG00000031184, and ENSSSCG00000037247 as 
the nearest genes, respectively (Table 2).

Multi‑breed meta‑analysis of average daily gain of three 
breeds
The total number of QTL detected in multi-breed meta-
analysis of three breeds contains 7 QTL on chromo-
somes 1, 4, 11 and 12 (Fig. 5, Table 3 and Supplementary 
Table S1). The multi-breed meta-analysis of three breeds 
did not reveal new QTL compared to the within-breed 
meta-analysis (Table  3). However, the lead SNP and 
the detailed QTL interval suggested by the multi-breed 
meta-analysis of three breeds is slightly different from the 
within-breed meta-analysis within each breed (Table 3). 
In the list of the nearest genes from multi-breed meta-
analysis, we found some nearest genes are different from 
the within-breed meta-analysis. On chromosome 1, the 

Fig. 3  Manhattan plot for the association of SNPs with daily weight gain in Landrace. The red horizontal line indicates a genome-wide significance 
level [-log10(p-value) = 8.5]

Table 1  Genomic regions identified by within-breed meta-analysis from subpopulation genome-wide association analysis of daily 
weight gain in Landrace

Chr Lead SNP location (bp) Region rs id of lead SNP -log10(p-value) Annotation of lead SNP Nearest gene

1 160,174,493 159,655,745 ~ 160,704,722 rs343467711 29.19 intergenic_variant CDH20

6 146,958,866 146,482,476 ~ 147,783,245 rs334716220 9.32 intergenic_variant LEPROT

7 21,015,982 20,500,737 ~ 21,587,268 rs697892846 9.01 intergenic_variant ABT1

12 3,639,288 3,530,556 ~ 4,277,570 rs1109299516 17.48 intron_variant TK1

18 2,162,425 1,301,989 ~ 2,856,015 rs793031877 8.74 intergenic_variant RNF32
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multi-breed meta-analysis suggested the nearest gene 
detected in Yorkshire instead of the one detected in Lan-
drace. On chromosome 11, the multi-breed meta-anal-
ysis suggested a new nearest gene FAM155A other than 
LIG4 suggested from the within-breed meta-analysis 
of Yorkshire. For the first QTL on chromosome 12, the 
multi-breed meta-analysis suggested a new nearest gene 
TNRC6C rather than TK1 suggested from the within-
breed meta-analysis of Landrace. And for the third QTL 
on chromosome 12, the multi-breed meta-analysis also 
suggested a new nearest gene WSB1 instead of NF1 sug-
gested from the within-breed meta-analysis of Yorkshire.

Post‑GWAS analyses
The candidate gene on chromosome 1 in Duroc and 
multi-breed meta-analysis of three breeds, MRAP2, 
belongs to the gene ontology (GO) terms “energy 
reserve metabolic process” (GO: 0006112) and “feeding 

behavior” (GO: 0007631). In the Mammalian Phenotype 
database (MPD), multiple phenotype terms are related 
to obesity or body size for MRAP2, e.g., “increased body 
weight”, “obese”, “increased total body fat amount”, and 
“increased food intake”. The candidate gene on chro-
mosome 1 in Yorkshire and multi-breed meta-analysis, 
ENSSSCG00000036234, is glutamate decarboxylase 
1-like. The GO term showed that this gene responds to 
the “carboxylic acid metabolic process” (GO: 0019752). 
LEPROT, the candidate gene on chromosome 6 in Lan-
drace, belongs to the GO term “negative regulation of 
growth hormone receptor signaling pathway” (GO: 
0060400). From MPD entry, a mutation in LEPROT could 
cause “increased food intake” or “decreased total body 
fat amount”. ELFN1, the nearest gene for ADG in York-
shire showed a MPD entry as “increased lean body mass”. 
LIG4, the nearest gene for the lead SNP on chromosome 
11 of Yorkshire showed a MPD entry as “decreased body 

Fig. 4  Manhattan plot for the association of SNPs with daily weight gain in Yorkshire. The red horizontal line indicates a genome-wide significance 
level [-log10(p-value) = 8.5]

Table 2  Genomic regions identified by within-breed meta-analysis from subpopulation genome-wide association analysis of daily 
weight gain in Yorkshire

Chr Location of 
lead SNP (bp)

Region rs id of lead SNP -log10(p-value) Annotation of the lead SNP Nearest gene

1 160,950,166 160,704,722 ~ 161,224,815 NA 33.78 intergenic_variant ENSSSCG00000036234

3 1,223,929 1,068,917 ~ 2,206,109 rs343847926 9.38 upstream_gene_variant ELFN1

4 77,498,483 77,174,471 ~ 77,837,179 rs345856128 10.54 intergenic_variant RB1CC1

7 34,791,135 34,405,000 ~ 35,135,343 rs319751202 8.53 intron_variant ENSSSCG00000031184

11 75,538,956 75,215,348 ~ 76,531,480 rs319374568 11.94 synonymous_variant LIG4

12 15,311,500 15,084,562 ~ 15,735,657 NA 16.39 intron_variant TACO1

12 43,812,683 43,485,392 ~ 44,078,471 NA 15.23 intergenic_variant NF1

13 10,845,327 10,754,226 ~ 11,415,685 NA 10.23 intergenic_variant ENSSSCG00000037247

17 15,758,097 15,490,020 ~ 16,171,660 rs694525579 12.50 intron_variant BMP2
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size”. And BMP2 on chromosome 17 of Yorkshire showed 
a MPD entry as “decreased body weight”.

We could not established biological support for 
most of the nearest gene with GO, Kyoto Encyclope-
dia of Genes and Genomes (KEGG) [28], and MPD. 
Therefore, we downloaded three RNAseq data sets to 
find further possible candidate genes (Supplementary 
Table S2). Although the definition of the trait between 
GWAS and RNAseq dataset and also the different 
population architecture could largely reduce the power 
of this strategy, finding the overlap between GWAS 
result and RNAseq from different sources could take 
advantage of the public available dataset to provide 
biological insight into the GWAS signals. These three 
data sets included longissimus thoracis muscle tis-
sue [29], liver tissue [30], and longissimus dorsi mus-
cle tissue with liver tissue [31] classifying pigs based 
on their feed efficiency. We searched for differential 
expressed genes (DEG) in each QTL region to identify 

candidate genes with more support from functional 
activity rather than just picking the nearest gene of 
the lead SNP (Table 4). For Duroc, no gene within the 
QTL interval was expressed differently between low 
and high feed efficiency animals. In Landrace, H1-4 
located within the QTL region on chromosome 7 and 
MNX1 located within the QTL region on chromo-
some 18 showed differential expression in the liver 
[31]. The QTL interval at chromosome 1 harbored one 
DEG between low and high feed efficiency animals, 
PMAIP1. This gene is located in the QTL interval in 
Yorkshire and multi-breed meta-analysis. In York-
shire, six other genes in the QTL intervals were DEGs 
in the liver [31]. They are PMAIP1, RGS20, FAM155A, 
ENSSSCG00000017285, ENSSSCG00000049912 and 
NR1D2. The QTL interval from multi-breed meta-
analysis of three breeds identified four more genes 
overlapping with the DEGs, ENSSSCG00000043998, 
SLC13A2, SEBOX and VTN. 

Fig. 5  Manhattan plot for the Meta-analysis of SNPs with daily weight gain of three breeds. The red horizontal line indicates a genome-wide 
significance level [-log10(p-value) = 8.5]

Table 3  Genomic regions identified by multi-breed meta-analysis of daily weight gain in three breeds

Chr Lead SNP location (bp) Region rs id of lead SNP -log10(p-value) Annotation of lead SNP Nearest gene

1 160,827,384 160,137,530 ~ 161,334,328 rs334720929 39.46 intergenic_variant ENSSSCG00000036234

1 53,289,914 53,184,709 ~ 54,008,032 rs344908085 16.09 intron_variant MRAP2

4 77,498,071 77,031,250 ~ 77,782,587 rs345469413 8.66 intergenic_variant RB1CC1

11 75,215,102 74,903,365 ~ 76,080,211 rs338148206 9.20 intron_variant FAM155A

12 3,876,962 3,604,107 ~ 4,277,570 NA 12.61 intron_variant TNRC6C

12 15,311,500 15,084,562 ~ 15,735,657 NA 12.18 intron_variant TACO1

12 43,848,701 43,594,176 ~ 44,823,295 rs324835464 10.13 intergenic_variant WSB1
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Overlap with the associations reported for human 
growth‑related traits
Daily weight gain is a growth-related trait. Therefore, the 
candidate genes identified for ADG in pigs could overlap 
with genes in humans for BMI, height, and obesity. If we 
see homologous genes across mammalian species, that 
will increase the confidence that the identified candidate 
genes are true. We checked genes in the QTL interval 
with BMI (EFO_0004340), height (EFO_0004339), and 
obesity (EFO_0001073) from the GWAS catalogue [32]. 
The genes marked as reported genes from the GWAS 
catalogue that overlapped with genes in our QTL inter-
vals are listed in Table 5. LEPROT is the candidate gene 
suggested by the nearest gene, which is also supported 
by GO and MPD. This gene is associated with human 
BMI (Table  5). PMAIP1 and FAM155A are DEGs from 
the RNAseq data set comparing high and low feed effi-
ciency animals. PMAIP1 is associated with human height 
and BMI. FAM155A is associated with human height and 
obesity. FAM155A is also the nearest gene in multi-breed 
meta-analysis. BMP2 is the nearest gene and showed 
human BMI and height.

Discussion
Since their emergence, GWAS have improved our under-
standing of the genetic determinants of complex traits of 
humans and livestock [33]. In human association studies, 
the availability of large data sets permits GWAS or meta-
analysis on a scale of more than 100,000 individuals [34, 
35]. However, in livestock, the scale of the sample size 
for GWAS is usually smaller than 10,000 from a single 
source of data [4, 5]. Here, we performed GWAS with a 
total sample size of 201,388 animals from three DanBred 

commercial pig breeds. With the increase of the sample 
size applied for GWAS, we have a higher power to detect 
the genetic variants that contributes to the trait variation.

Table 4  The differentially expressed genes located within any of the QTL intervals for average daily weight gain in three pig breeds 
and multi-breed meta-analysis

a  FDR false discovery rate

Gene log2fold change FDRa Breed

PMAIP1 -1.02 4.08e-7 Yorkshire and Meta-analysis

ENSSSCG00000043998 -1.02 7.54e-8 Meta-analysis

RGS20 -1.42 2.38e-2 Yorkshire

H1-4 -1.37 6.76e-5 Landrace

FAM155A -1.41 1.18e-2 Yorkshire and Meta-analysis

ENSSSCG00000017285 -1.64 1.06e-3 Yorkshire and Meta-analysis

ENSSSCG00000049912 -1.11 2.15e-3 Yorkshire and Meta-analysis

SLC13A2 -1.26 1.98e-2 Meta-analysis

SEBOX 1.32 7.92e-4 Meta-analysis

VTN 1.19 1.96e-5 Meta-analysis

NR1D2 -1.23 3.58e-16 Yorkshire

MNX1 1.39 8.74e-3 Landrace

Table 5  Human GWAS catalogue for BMI, height, and obesity 
overlap of genes in QTL intervals for average daily weight gain in 
three pig breeds and multi-breed meta-analysis

Gene Human trait Breed

MC4R BMI, Height and Obesity Yorkshire and Meta

PMAIP1 BMI and Height Yorkshire and Meta

IQCE Obesity Yorkshire

AMZ1 Height Yorkshire

GNA12 Height Yorkshire

LEPR BMI and Obesity Landrace

LEPROT BMI Landrace

SLC17A4 Obesity Landrace

SLC17A1 Obesity Landrace

SLC17A2 Height Landrace

SLC17A3 Obesity Landrace

TRIM38 Height Landrace

HIST1H2BD Height Landrace

BTN1A1 BMI Landrace

ZNF322 Height Landrace

PRSS16 BMI Landrace

U6 Height Landrace, Yorkshire and Meta

DDX42 BMI Yorkshire and Meta

MAP3K3 Height Yorkshire and Meta

THRB Height Yorkshire

BMP2 BMI and Height Yorkshire

DNAJB6 BMI Landrace

UBE3C BMI Landrace
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The imputation of the SNP array genotypes to WGS 
level in humans [1, 36] has accelerated the association 
discoveries and unveiled the underlying genetic deter-
minants of complex traits [16, 37–40]. Recently, similar 
work has also been accomplished in livestock animals, 
e.g., dairy cattle [2, 11]. However, imputation to WGS has 
been less widely reported in pigs. Most of the work has 
focused on evaluating the power to impute low-density 
marker sets (10k, 9k, etc.) to medium-density marker sets 
(60k) and achieved an imputation accuracy above 0.95 
[41–44]. In 2019, van den Berg et al. [45] used two-step 
strategies (first 80 to 660k, and then to WGS) similar to 
the strategy followed in the current study. However, the 
average estimated imputation accuracy for all WGS vari-
ants was only around 0.5 for Large White and around 
0.4 for Dutch Landrace [45]. In our study, we achieved 
a much higher estimated imputation accuracy (Fig.  1), 
which is comparable to that in cattle [2].

In cattle, it is well supported that a multi-breed refer-
ence population can achieve higher imputation accu-
racy [11]. The same strategy has also been applied in pig 
imputation [45]. Unlike dairy cattle where most animals 
are purebred, most pigs in the production are two-way 
crossbred sows or three-way crossbred slaughter animals. 
Previous work has shown that imputation of a low-den-
sity marker set of crossbred to a high-density marker set 
using a purebred reference population or imputation of 
a low-density marker set of purebred to a high-density 
marker set using a crossbred reference population both 
resulted in high accuracy [41, 43]. In this study, we tested 
whether the HD genotypes available from three-way 
crosses could be used as an intermediate reference panel 
for imputation from low-density genotyped animals to 
WGS level to achieve higher accuracy. The results con-
firmed that the HD crossbred genotypes could be used as 
an intermediate reference panel for purebreds to impute 
to WGS variants level.

In this study, we reported the estimated imputation 
accuracy from Minimac4 instead of calculation of the 
empirical imputation accuracy. Previous study have 
shown that the R-sq values estimated by Minimac3 (same 
as Minimac4) were highly correlated with correlation-
based empirical measures [46, 47]. Of course, using the 
estimated accuracy could limit the direct comparison 
between studies. However, as imputation becomes a 
routine work for research groups, scientists are aware of 
the differences between these two accuracy parameters. 
Besides this, low imputation accuracy may increase the 
false negative rate in GWAS, but unlikely to increase 
false positive rate. Furthermore, the estimated accuracy 
is sufficient for us to filter out the low quality imputed 
markers. Therefore, we decided to report the estimated 
imputation accuracy.

RNA-seq is a powerful tool to carry out functional 
studies. However, in livestock studies, scientists face the 
difficulty to choose the right tissue and right develop-
ment stage related to traits. Previous reports in human 
found that the estimated correlation of genetic effects of 
cis-eQTLs between blood tissue and brain tissue could 
be high as 0.70 [48]. Of course, in such human studies, we 
could lose some tissue-specific expression genes. Mean-
while, without using the same samples for a GWAS study 
and a RNA-seq study, it is still worth to combine two 
types of data [49]. In the above mentioned two human 
studies, they showed the possibility of using RNA-seq 
data which are different from the mapping population 
and with an inconsistency of the study traits and tissues. 
So, using related-traits RNA-seq data, which are from 
different breeds could still facilitate finding the common 
underlying genetic factors between related traits. There-
fore, in this study, we used three datasets comparing the 
DEGs between high and low feed efficiency to prioritize 
our GWAS result. There was a risk that the difference 
of the segregation of alleles in different breeds, and the 
difference between feed efficiency and ADG traits could 
results in no additional information on candidate genes. 
Only one of the three RNA-seq datasets showed com-
mon genes with our GWAS results.

The GWAS results for three breeds are quite differ-
ent. The majority of the differences comes from the seg-
regation of different alleles in three breeds, which could 
be part of the consequence of selection. In the Danbred 
system, the breeding goal of Duroc is different from the 
common breeding goal of Landrace and Yorkshire: The 
goal for Duroc pigs has more weight on growth, lean-
ness, and feed efficiency, whereas the goal for Landrace 
and Yorkshire has more weight on maternal traits [50]. So 
certain loci underlying growth may be fixed in Duroc and 
still segregating in Yorkshire and Landrace. This could 
be part of the reason why we observed different map-
ping result between the three breeds. Meanwhile, we also 
observed differences of the GWAS results between sub-
populations. There are two major reason for this: 1) these 
three breeds are under intensive selection; 2) the splitting 
of the population could reduce the mapping power.

Daily weight gain is a key trait in pig breeding goals 
since it plays an important role in economic return. The 
QTL mapped for daily weight gain in pigs was spread 
across all chromosomes [51]. With the large sample size, 
we had a high power to locate the QTL. We checked the 
overlap of the genes in the QTL intervals for daily weight 
gain pigs with an association reported for three human 
growth-related traits (human height, obesity, and BMI) 
from the GWAS catalogue [32]. The underlying logic for 
this strategy was threefold: 1) the similarity of genetic 
determinants in pigs and humans; pigs are used as model 
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species for human biomedical research [52]; 2) the share 
of the causal genes may generate new knowledge about 
gene function [7]; 3) the nearest genes of the lead SNP 
from GWAS may not be the causal ones. Furthermore, 
the choice of the human traits was based on two criteria, 
1) traits are growth related; 2) traits should capture the 
common causal genes, and so we included child growth 
trait for these three human traits. Finally, we found at 
least one gene for each QTL interval for ADG in pigs 
overlapping with the reported genes for human growth-
related traits.

Human height, BMI and obesity are classical com-
plex traits in human genetics. The accumulation of the 
knowledge about these trait makes them as a gold mine 
to understand mammalian growth related traits. By com-
paring our result with these three traits, we found some 
genes that are the nearest genes from the GWAS and 
one gene in the DEGs list. LEPROT is the nearest to the 
lead SNP on chromosome 6 in Landrace. The GO and 
MPD have an entry to support that this gene is related to 
mammalian growth. In a human study, GWAS of 7,215 
children revealed that LEPROT is one of the impor-
tant loci for early growth [53]. FAM155A is the nearest 
gene from GWAS of Yorkshire which is also supported 
by DEGs. This gene was reported in a study for human 
height, BMI and obesity [54–57]. PMAIP1 is located in 
the QTL interval, showed in the DEGs list and associated 
with human BMI and height [58, 59]. BMP2 is the near-
est gene and literature showed association with human 
height and BMI [60, 61]. Besides, MRAP2 is an important 
candidate for ADG in pigs since it has support for GO 
annotation and Mammalian Phenotype database. ENS-
SSCG00000036234, ELFN1, LIG4 could also be good 
candidate genes with support from nearest gene and GO 
annotation.

Conclusions
In this study, for three large pig populations, we have 
accurately imputed from low-density chip to WGS with 
a high estimated imputation accuracy. This is useful for 
deciding on an imputation strategy in future genomics 
studies in pigs. The validation of the QTL interval with 
the GWAS catalogue of human height, obesity, and BMI 
showed that GWAS accurately map the QTL region and 
suggested several candidate genes for daily weight gain 
in pigs. Our results will improve our understanding of 
genetic architecture of ADG in pigs and can also be 
exploited in pig breeding to improve daily weight gain.

Methods
Animals and phenotype
Phenotypic records and SNP array genotypes from three 
DanBred pig breeds, Duroc, Landrace, and Yorkshire, 

were provided by SEGES – Breeding & Genetics in pigs. 
Corrected phenotypes for ADG from 30-100 kg were 
computed using predicted effects from the routine 
genetic evaluation model. The corrected phenotype of 
ADG for an individual equals the sum of the predicted 
breeding value and predicted residual, or in other words 
the phenotype minus the sum of all predicted non-
genetic fixed and random effects.

Briefly, the routine genetic evaluation model is a four-
variate model with traits: average daily gain 7-30 kg, 
average daily gain 30-100 kg, meat percentage computed 
from the scanning of back fat and weight at the time of 
scanning, and feed efficiency. Fixed effects are year-herd-
month (all traits), sex (except for feed efficiency, since 
only boars have that measurement), and start weight 
(except for meat percentage). Random effects are breed-
ing value (all traits), pen (ADG, meat percentage), and lit-
ter (all traits).

Genotyping and whole‑genome resequencing
In this study, we used three sets of genotypes, starting 
from low- to medium-density SNP array through to the 
whole-genome variant level.

Low‑ to medium‑density SNP genotyping
In total, 201,388 pigs were genotyped with multiple low- 
to medium-density (8.5 to 70k) SNP chips. These were 
42,790 Duroc, 88,984 Landrace, and 69,606 Yorkshire. 
The number of Duroc, Landrace, and Yorkshire animals 
genotyped with a Genomic Profiler (GGP) Porcine LD 
array (8.5k) chip was 7,328, 13,238, and 13,282, respec-
tively; and the number of pigs genotyped with a GGP_
HD_Porcine chip (43k) was 31,287, 68,800, and 49,313, 
respectively. The number of pigs genotyped with an Illu-
mina PorcineSNP60 BeadChip (60k) or GGP Porcine HD 
array (70k) was 4,175 Duroc, 6,946 Landrace, and 7,011 
Yorkshire.

High‑density (HD) SNP array
We used high-density genotypes using Affymetrix Axiom 
PigHD SNP chips (Axiom_PigHDv1, 658k) of 474 three-
way crossbred pigs as the intermediate reference panel. 
The animals were part of the “MetaPig – Modulation 
of the pig gut metagenome to increase feed efficiency” 
project (http://​www.​metap​ig.​eu). These three-way cross-
breds are produced by crossing F1 sows from Landrace 
and Yorkshire inseminated with mixed semen from 
Duroc boars. The details on this HD genotype data set 
are presented by Cai et al. [50].

Whole‑genome resequencing
A total of 217 animals of three DanBred commercial pig 
breeds, i.e., 89 Duroc, 61 Landrace, and 67 Yorkshire, 

http://www.metapig.eu
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were sequenced. The animals for sequencing were 
selected based on their genetic contribution to the geno-
typed animals born in 2010, 2011, and 2012. The detail of 
the sequencing and processing of the data can be found 
in our previous study [50]. For each individual, paired-
end read trimming was performed using trim-fastq 
from the PoPoolation package [62]. Filtered reads were 
aligned to the porcine reference genome build 11 [63] 
by the Burrows-Wheeler Aligner (BWA version 0.7.17) 
[64], employing “bwa-mem”. SAMtools version 1.8 (Li 
et al. 2009) was used for sorting, merging, and marking 
potential PCR duplicates. From here until the VCF file, 
the reads were processed using the Genome Analysis 
Toolkit (GATK version 3.8) [65] according to the 1000 
bull genome project pipeline [2].

We applied hard filtering as following. For SNPs, we 
applied: "QD < 2.0, "SOR > 3.0", "FS > 60.0", "MQ < 40.0", 
"MQRankSum < -12.5", “ReadPosRankSum < -8.0", and 
“DP < 4 || DP > 6600". For INDELs, we applied "QD < 
2.0", "FS > 200.0", "ReadPosRankSum < -20.0", "Inbreed-
ingCoeff < -0.8","DP < 4 || DP > 6600", and "SOR > 10.0". 
Then we combined the filtered SNP set and INDEL set as 
the final reference panel.

SNP map position
The probe sequence (50 bp flanking the SNP) of the 10k, 
50k, 60k, and HD chip array was mapped to the sus11.1 
assembly by bwa-mem [64]. Only the probes mapped 
uniquely and CIGAR string with “50M” were retained 
for the following imputation. We replaced the location of 
SNPs with the location of the mapping result.

Genotype imputation
The genotypes (10, 43, 60 and 70 k) of pigs from all three 
breeds were combined and phased using Eagle [66]. The 
HD and WGS marker sets were phased following the 
procedure of Mesbah-Uddin et al. [67]. Briefly, the gen-
otypes were phased by Beagle4 (r1274) [68] to calculate 
the genotype probability, and then SHAPEIT2 (v2.r837) 
[69] was used to call the genotype of the markers with 
a genotype probability less than 0.99. For imputation 
of the combined data set to the WGS level, we adopted 

two-step imputation strategies described in van Bins-
bergen et  al. and Brøndum et  al. [10, 11]. In the first 
step, we imputed all individuals genotyped by low- and 
medium-density chips to HD level using the 474 three-
way crossbred animals as an intermediate reference panel 
using Minimac4 [70]. In the second step, we imputed this 
imputed HD marker set to whole-genome sequencing 
(WGS) level using the 217 WGS individuals using Mini-
mac4 [70]. Before GWAS, we filtered away all SNPs with 
minor allele frequency below 0.5%, with a large deviation 
from Hardy–Weinberg proportions (p < 1.0− 6), or an R2 
value of the estimated imputation accuracy estimated by 
Minimac4 of less than 0.4.

Association analysis and meta‑analysis
Due to the large number of animals in each breed, the 
GWAS by GCTA required a huge amount of computer 
memory. To deal with this issue, we separated the popu-
lation into three similar-size subsets based on the birth 
year (Table  6). Then we run sub-population GWAS in 
each subset followed by within-breed meta-analysis 
to combine results from subsets for a breed. For sub-
population GWAS, we estimated the genomic relation 
matrix (GRM) for all autosomes by GCTA [71] using 
the imputed HD marker set. The method that was used 
to estimate GRM between individuals using SNP data is 
implemented in GCTA [71]. Briefly, genotype dosages 
and allele frequency of each SNP between one pair of 
individuals i and j were used to calculate the relationship 
score, then average relationship score across all SNPs was 
calculated as the relationship between individuals i and j. 
We ran the association study for each chromosome with 
the GRM obtained above using GCTA [71] in each sub-
set, using a mixed-model approach, GCTA-MLMA using 
the following model:

where y  is the phenotype value, a  is the population 
mean, b is the fixed effect the candidate SNP to be tested 
for association, x is the SNP genotype, and g is the poly-
genic effect captured by the GRM calculated using the 

y = a+ bx + g + e

Table 6  The number of animals, genomic inflation factor (lambda), and the ratio between additive variance (VA) and phenotypic 
variance (VP), i.e., genomic heritability for each subset of data for three pig breeds

Duroc Landrace Yorkshire

Before 2015 2015-16 2017-18 Before 2015 2015-16 2017-18 Before 2015 2015-16 2017-18

Number 15,190 12,810 14,663 22,121 18,960 46,593 22,179 16,225 29,840

Lambda 0.95 0.95 1.00 0.98 0.93 0.97 0.92 0.92 0.92

Lambda 1.32 1.30 1.35

VA
/

VP

0.252 0.149 0.175 0.282 0.299 0.228 0.282 0.250 0.230
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imputed HD marker set and e is the residual. We set the 
genome-wide significant threshold as -log10 (p-value) > 
8.5 with Bonferroni correction (0.05/13,000,000). Then 
we performed within-breed meta-analysis using METAL 
[72] with the option of genomic control to deal with the 
inflation. The number of animals with both genotype 
and phenotype information was 198,623 (42,663 Duroc, 
87,674 Landrace, and 68,244 Yorkshire). At last, we per-
formed multi-breed meta-analysis to investigate the 
association signals across the three breeds with the same 
parameter as within-breed meta-analysis. The details of 
the animal number of each breed, the animal number 
of each subpopulation, and the genomic inflation factor 
(lambda) estimated by METAL [72] are listed in Table 6.

Post‑GWAS analysis
The location of the annotated genomic feature was 
extracted from Ensembl [73]. The GO and KEGG path-
way annotation of pig genes were also extracted from 
Ensembl [73]. We performed the variants annotation 
using the Ensembl Variant Effect Predictor (ver99) [74]. 
The possible consequence of the impact of the vari-
ant on the phenotype based on mouse mutation lines 
was retrieved from the Mammalian Phenotype database 
(MPD) [19].

Differentially expressed gene analysis
We downloaded three RNA-seq dataset to perform 
the differentially expressed gene (DEG) analysis: 
PRJEB23668, PRJEB29969 and PRJEB23289. PRJEB23668 
included liver tissue from 20 Maxgro (Hermitage 
Genetics) x (German Landrace x Large White) pigs. 
PRJEB29969 included 96 samples from (Large White x 
Landrace) x Meatline liver or longissimus dorsi muscle 
tissue. PRJEB23289 included longissimus thoracis muscle 
tissue from 20 Maxgro (Hermitage Genetics) x (German 
Landrace x Large White) pigs. Each of the three data sets 
were divided into high feed efficiency and low feed effi-
ciency groups.

To use the new assembly and annotation informa-
tion on pigs, we decided to reanalyze three previously 
reported RNA-seq data from the liver and/or muscle tis-
sue between high and low feed efficiency animals [29–
31]. The raw reads were downloaded from ENA (https://​
www.​ebi.​ac.​uk/​eva). We used Trimmomatic (Ver 0.39) 
[75] to remove potential adapter sequence and trim low-
quality reads. For DEG analysis, we downloaded the pig 
reference genome and transcriptome from Ensembl (v99) 
[73]. We built a decoy-aware transcriptome index file 
with the genome sequence and transcriptome sequence 
following the guidance of Salmon (v1.2.0) [76]. The final 
clean data were mapped to the decoy transcriptome using 
Salmon (v1.2.0) [76]. The DEG analysis was performed 

using DESeq2 [77]. The genes with an adjusted p value 
< 0.05 and log2 fold change > 1 or < -1 were regarded as 
DEGs.

Validation with GWAS catalogue of human height, obesity, 
and body mass index
The GWAS catalogue of human height (EFO_0004339-
withChildTraits_2020_06_10), obesity (EFO_0001073-
withChildTraits_2020_06_10), and body mass index 
(BMI, EFO_0004340-withChildTraits_2020_06_04) was 
downloaded from the NHGRI-EBI Catalog of human 
genome-wide association studies [32]. The selection of 
the human traits was limited to growth related. We would 
like to find the common genetic factors that underlies 
human height, obesity, BMI and pig ADG on individuals 
in their growing period. We checked the overlap of the 
genes in the QTL intervals from our analysis in pigs with 
the reported genes from the GWAS catalogue in humans.

Abbreviations
QTL: Quantitative trait loci; GWAS: Genome-wide association study; ADG: 
Average daily gain; WGS: Whole genome sequencing; HD: High density; MAF: 
Minor allele frequency; SNP: Single nucleotide polymorphism; GO: Gene 
ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​022-​08373-3.

Additional file 1: Supplementary Figure S1-6. 

Additional file 2: Supplementary Table S1. 

Additional file 3: Supplementary Table S2. 

Acknowledgments
We acknowledge SEGES Danish Pig Research Centre, Copenhagen, Denmark 
for giving access to genotype and phenotype data of three pig breeds. 
MetaPig–Modulation of the pig gut metagenome to increase feed efficiency 
project is acknowledged for sharing PigHD genotype data for imputation. 
This research was supported in part by the Center for Genomic Selection in 
Animals and Plants (GenSAP) funded by Innovation Fund Denmark, grant 
number 0603-00519B.

Authors’ contributions
GS, ZC, OFC, and MSL conceived and designed the study. ZC, OFC and GS ana-
lyzed the data and wrote the paper. MSL, TO and OFC contributed materials 
and analysis tools. All authors read, revised, and approved the final manuscript.

Funding
This work is funded by the Center for Genomic Selection in Animals and Plants 
(GenSAP) funded by Innovation Fund Denmark (grant 0603-00519B). The 
funders had no input into study design, data analyses and data interpretation.

Availability of data and materials
Genome assembly data used in this study were obtained from the NCBI 
(https://​ftp.​ncbi.​nlm.​nih.​gov/​genom​es/​all/​GCF/​000/​003/​025/​GCF_​00000​
3025.6_​Sscro​fa11.1/). All annotation information was obtained from a publicly 
available source (http://​www.​ensem​bl.​org). Whole-genome sequences and 
individual SNP genotype data in this study are available only upon agreement 
with the breeding organization and should be requested directly from the 
authors. RNA-seq data were from bio project PRJEB23289, PRJEB23668, and 

https://www.ebi.ac.uk/eva
https://www.ebi.ac.uk/eva
https://doi.org/10.1186/s12864-022-08373-3
https://doi.org/10.1186/s12864-022-08373-3
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/003/025/GCF_000003025.6_Sscrofa11.1/
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/003/025/GCF_000003025.6_Sscrofa11.1/
http://www.ensembl.org


Page 12 of 13Cai et al. BMC Genomics          (2022) 23:133 

PRJEB29969. The genotype and phenotype used and/or analysed during the 
current study available are available from the authors with the permission of 
SEGES Danish Pig Research Centre (https://​pigre​searc​hcent​re.​dk/). Access to 
these data for research requires permission from DataGene under a Data Use 
Agreement.

Declarations

Ethics approval and consent to participate
Not applicable because no biological samples were collected and no animal 
handling was performed for this study. Before this study was conducted, 
consent from data owners was obtained where required.

Consent for publication
Not applicable.

Competing interests
The authors have declared no competing interests.

Author details
1 Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, 
Denmark. 2 SEGES Danish Pig Research Centre, Agro Food Park 15, 8200 Aarhus 
N, Denmark. 

Received: 31 August 2021   Accepted: 8 February 2022

References
	1.	 Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddles-

ton J, et al. An integrated map of structural variation in 2,504 human 
genomes. Nature. 2015;526(7571):75–81.

	2.	 Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, 
Brondum RF, et al. Whole-genome sequencing of 234 bulls facilitates 
mapping of monogenic and complex traits in cattle. Nat Genet. 
2014;46(8):858–65.

	3.	 Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce CH, Sargolzaei M, 
Schenkel FS, et al. Meta-analysis of genome-wide association studies 
for cattle stature identifies common genes that regulate body size in 
mammals. Nat Genet. 2018;50(3):362–7.

	4.	 Cai Z, Guldbrandtsen B, Lund MS, Sahana G. Prioritizing candidate 
genes post-GWAS using multiple sources of data for mastitis resistance 
in dairy cattle. BMC Genomics. 2018;19(1):656.

	5.	 Cai Z, Guldbrandtsen B, Lund MS, Sahana G. Prioritizing candidate 
genes for fertility in dairy cows using gene-based analysis, func-
tional annotation and differential gene expression. BMC Genomics. 
2019;20(1):255.

	6.	 Cai Z, Guldbrandtsen B, Lund MS, Sahana G. Dissecting closely linked 
association signals in combination with the mammalian phenotype 
database can identify candidate genes in dairy cattle. BMC Genet. 
2019;20(1):15.

	7.	 Cai Z, Dusza M, Guldbrandtsen B, Lund MS, Sahana G. Distinguishing 
pleiotropy from linked QTL between milk production traits and mastitis 
resistance in Nordic Holstein cattle. Genet Sel Evol. 2020;52(1):19.

	8.	 Cai Z, Guldbrandtsen B, Lund MS, Sahana G. Weighting sequence variants 
based on their annotation increases the power of genome-wide associa-
tion studies in dairy cattle. Genet Sel Evol. 2019;51(1):20.

	9.	 Pausch H, Emmerling R, Gredler-Grandl B, Fries R, Daetwyler HD, Goddard 
ME. Meta-analysis of sequence-based association studies across three 
cattle breeds reveals 25 QTL for fat and protein percentages in milk at 
nucleotide resolution. BMC Genomics. 2017;18(1):853.

	10.	 van Binsbergen R, Bink MC, Calus MP, van Eeuwijk FA, Hayes BJ, Hulsegge 
I, et al. Accuracy of imputation to whole-genome sequence data in 
Holstein Friesian cattle. Genet Sel Evol. 2014;46(1):41.

	11.	 Brøndum RF, Guldbrandtsen B, Sahana G, Lund MS, Su G. Strategies for 
imputation to whole genome sequence using a single or multi-breed 
reference population in cattle. BMC Genomics. 2014;15(1):728.

	12.	 Quan J, Ding R, Wang X, Yang M, Yang Y, Zheng E, et al. Genome-wide 
association study reveals genetic loci and candidate genes for average 
daily gain in Duroc pigs. Asian Australas J Anim Sci. 2018;31(4):480–8.

	13.	 Sanchez MP, Tribout T, Iannuccelli N, Bouffaud M, Servin B, Tenghe A, et al. 
A genome-wide association study of production traits in a commercial 
population of Large White pigs: evidence of haplotypes affecting meat 
quality. Genet Sel Evol. 2014;46(1):12.

	14.	 Hu ZL, Dracheva S, Jang W, Maglott D, Bastiaansen J, Rothschild MF, et al. 
A QTL resource and comparison tool for pigs: PigQTLDB. Mamm Genome. 
2005;16(10):792–800.

	15.	 Falker-Gieske C, Blaj I, Preuss S, Bennewitz J, Thaller G, Tetens J. GWAS 
for meat and carcass traits using imputed sequence level geno-
types in pooled F2-designs in Pigs. G3-Genes Genomes Genetics. 
2019;9(9):2823–34.

	16.	 Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR, et al. Rare 
and low-frequency coding variants alter human adult height. Nature. 
2017;542(7640):186–90.

	17.	 Goumidi L, Cottel D, Dallongeville J, Amouyel P, Meirhaeghe A. Effects 
of established BMI-associated loci on obesity-related traits in a French 
representative population sample. BMC Genet. 2014;15(1):62.

	18.	 Brondum RF, Su G, Janss L, Sahana G, Guldbrandtsen B, Boichard D, 
et al. Quantitative trait loci markers derived from whole genome 
sequence data increases the reliability of genomic prediction. J Dairy Sci. 
2015;98(6):4107–16.

	19.	 Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT, Mouse Genome 
Database G. The Mouse Genome Database (MGD): premier model organ-
ism resource for mammalian genomics and genetics. Nucleic Acids Res. 
2011;39(Database issue):D842–8.

	20.	 Sage RD, Atchley WR, Capanna E. House mice as models in systematic 
biology. Syst Biol. 1993;42(4):523–61.

	21.	 Gorbunova V, Bozzella MJ, Seluanov A. Rodents for comparative aging 
studies: from mice to beavers. Age (Dordr). 2008;30(2-3):111–9.

	22.	 Peng X, Alfoldi J, Gori K, Eisfeld AJ, Tyler SR, Tisoncik-Go J, et al. The draft 
genome sequence of the ferret (Mustela putorius furo) facilitates study of 
human respiratory disease. Nat Biotechnol. 2014;32(12):1250–5.

	23.	 Meeusen EN, Snibson KJ, Hirst SJ, Bischof RJ. Sheep as a model species 
for the study and treatment of human asthma and other respiratory 
diseases. Drug Discov Today Dis Model. 2009;6(4):101–6.

	24.	 Gieling ET, Schuurman T, Nordquist RE, van der Staay FJ. The pig as a 
model animal for studying cognition and neurobehavioral disorders. In:  
Molecular and functional models in neuropsychiatry. Berlin: Springer; 
2011. p. 359–83.

	25.	 Sauleau P, Lapouble E, Val-Laillet D, Malbert CH. The pig model in brain 
imaging and neurosurgery. Animal. 2009;3(8):1138–51.

	26.	 Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model 
for human infectious diseases. Trends Microbiol. 2012;20(1):50–7.

	27.	 Diamond LE, Quinn CM, Martin MJ, Lawson J, Platt JL, Logan JS. A human 
CD46 transgenic pig model system for the study of discordant xenotrans-
plantation. Transplantation. 2001;71(1):132–42.

	28.	 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28(1):27–30.

	29.	 Horodyska J, Wimmers K, Reyer H, Trakooljul N, Mullen AM, Lawlor PG, 
et al. RNA-seq of muscle from pigs divergent in feed efficiency and 
product quality identifies differences in immune response, growth, 
and macronutrient and connective tissue metabolism. BMC Genomics. 
2018;19(1):791.

	30.	 Horodyska J, Hamill RM, Reyer H, Trakooljul N, Lawlor PG, McCormack UM, 
et al. RNA-seq of liver from pigs divergent in feed efficiency highlights 
shifts in macronutrient metabolism, hepatic growth and immune 
response. Front Genet. 2019;10(117):117.

	31.	 Vigors S, O’Doherty JV, Bryan K, Sweeney T. A comparative analysis of the 
transcriptome profiles of liver and muscle tissue in pigs divergent for feed 
efficiency. BMC Genomics. 2019;20(1):461.

	32.	 MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new 
NHGRI-EBI catalog of published genome-wide association studies (GWAS 
Catalog). Nucleic Acids Res. 2017;45(D1):D896–901.

	33.	 Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 
years of GWAS discovery: biology, function, and translation. Am J Hum 
Genet. 2017;101(1):5–22.

	34.	 Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ATC, 
Replication DIG, et al. Conditional and joint multiple-SNP analysis of 

https://pigresearchcentre.dk/


Page 13 of 13Cai et al. BMC Genomics          (2022) 23:133 	

GWAS summary statistics identifies additional variants influencing com-
plex traits. Nat Genet. 2012;44(4):369–75 S361-363.

	35.	 Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, et al. 
GWAS of 126,559 individuals identifies genetic variants associated with 
educational attainment. Science. 2013;340(6139):1467–71.

	36.	 Consortium GP. An integrated map of genetic variation from 1,092 
human genomes. Nature. 2012;491(7422):56.

	37.	 Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. 
Common SNPs explain a large proportion of the heritability for human 
height. Nat Genet. 2010;42(7):565–9.

	38.	 Zeng J, de Vlaming R, Wu Y, Robinson MR, Lloyd-Jones LR, Yengo L, et al. 
Signatures of negative selection in the genetic architecture of human 
complex traits. Nat Genet. 2018;50(5):746–53.

	39.	 Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, et al. Genetic 
variance estimation with imputed variants finds negligible miss-
ing heritability for human height and body mass index. Nat Genet. 
2015;47(10):1114–20.

	40.	 Sniekers S, Stringer S, Watanabe K, Jansen PR, Coleman JRI, Krapohl E, 
et al. Genome-wide association meta-analysis of 78,308 individuals 
identifies new loci and genes influencing human intelligence. Nat Genet. 
2017;49(7):1107–12.

	41.	 Xiang T, Ma P, Ostersen T, Legarra A, Christensen OF. Imputation of geno-
types in Danish purebred and two-way crossbred pigs using low-density 
panels. Genet Sel Evol. 2015;47(1):54.

	42.	 Badke YM, Bates RO, Ernst CW, Fix J, Steibel JP. Accuracy of estimation 
of genomic breeding values in pigs using low-density genotypes and 
imputation. G3. 2014;4(4):623–31.

	43.	 Gualdron Duarte JL, Bates RO, Ernst CW, Raney NE, Cantet RJ, Steibel JP. 
Genotype imputation accuracy in a F2 pig population using high density 
and low density SNP panels. BMC Genet. 2013;14(1):38.

	44.	 Cleveland MA, Hickey JM. Practical implementation of cost-effective 
genomic selection in commercial pig breeding using imputation. J Anim 
Sci. 2013;91(8):3583–92.

	45.	 van den Berg S, Vandenplas J, van Eeuwijk FA, Bouwman AC, Lopes MS, 
Veerkamp RF. Imputation to whole-genome sequence using multiple pig 
populations and its use in genome-wide association studies. Genet Sel 
Evol. 2019;51(1):2.

	46.	 Hermisdorff IDC, Costa RB, de Albuquerque LG, Pausch H, Kadri NK. Inves-
tigating the accuracy of imputing autosomal variants in Nellore cattle 
using the ARS-UCD1.2 assembly of the bovine genome. BMC Genomics. 
2020;21(1):772.

	47.	 Bolormaa S, Chamberlain AJ, Khansefid M, Stothard P, Swan AA, Mason 
B, et al. Accuracy of imputation to whole-genome sequence in sheep. 
Genet Sel Evol. 2019;51(1):1.

	48.	 Qi T, Wu Y, Zeng J, Zhang F, Xue A, Jiang L, et al. Identifying gene targets 
for brain-related traits using transcriptomic and methylomic data from 
blood. Nat Commun. 2018;9(1):2282.

	49.	 Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration 
of summary data from GWAS and eQTL studies predicts complex trait 
gene targets. Nat Genet. 2016;48(5):481–7.

	50.	 Cai Z, Sarup P, Ostersen T, Nielsen B, Fredholm M, Karlskov-Mortensen P, 
et al. Genomic diversity revealed by whole-genome sequencing in three 
Danish commercial pig breeds. J Anim Sci. 2020;98(7):skaa229.

	51.	 Hu ZL, Park CA, Wu XL, Reecy JM. Animal QTLdb: an improved database 
tool for livestock animal QTL/association data dissemination in the post-
genome era. Nucleic Acids Res. 2013;41(Database issue):D871–9.

	52.	 Merrifield CA, Lewis M, Claus SP, Beckonert OP, Dumas ME, Duncker S, 
et al. A metabolic system-wide characterisation of the pig: a model for 
human physiology. Mol BioSyst. 2011;7(9):2577–88.

	53.	 Couto Alves A, De Silva NMG, Karhunen V, Sovio U, Das S, Taal HR, et al. 
GWAS on longitudinal growth traits reveals different genetic factors 
influencing infant, child, and adult BMI. Sci Adv. 2019;5(9):eaaw3095.

	54.	 Kichaev G, Bhatia G, Loh P-R, Gazal S, Burch K, Freund MK, et al. Leverag-
ing polygenic functional enrichment to improve GWAS power. Am J Hum 
Genet. 2019;104(1):65–75.

	55.	 Zhu Z, Guo Y, Shi H, Liu C-L, Panganiban RA, Chung W, et al. Shared 
genetic and experimental links between obesity-related traits 
and asthma subtypes in UK Biobank. J Allergy Clin Immunol. 
2020;145(2):537–49.

	56.	 Tachmazidou I, Suveges D, Min JL, Ritchie GRS, Steinberg J, Walter K, et al. 
Whole-genome sequencing coupled to imputation discovers genetic 
signals for anthropometric traits. Am J Hum Genet. 2017;100(6):865–84.

	57.	 Wilson CL, Liu W, Yang JJ, Kang G, Ojha RP, Neale GA, et al. Genetic 
and clinical factors associated with obesity among adult survivors of 
childhood cancer: a report from the St. Jude Lifetime Cohort. Cancer. 
2015;121(13):2262–70.

	58.	 Winkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S, et al. The 
influence of age and sex on genetic associations with adult body size 
and shape: a large-scale genome-wide interaction study. PLoS Genet. 
2015;11(10):e1005378.

	59.	 Akiyama M, Ishigaki K, Sakaue S, Momozawa Y, Horikoshi M, Hirata M, 
et al. Characterizing rare and low-frequency height-associated variants in 
the Japanese population. Nat Commun. 2019;10(1):4393.

	60.	 Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, et al. Leveraging 
polygenic functional enrichment to improve GWAS power. Am J Hum 
Genet. 2019;104(1):65–75.

	61.	 Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic 
studies of body mass index yield new insights for obesity biology. Nature. 
2015;518(7538):197–206.

	62.	 Kofler R, Orozco-terWengel P, De Maio N, Pandey RV, Nolte V, Futs-
chik A, et al. PoPoolation: a toolbox for population genetic analysis of 
next generation sequencing data from pooled individuals. PLoS One. 
2011;6(1):e15925.

	63.	 Warr A, Affara N, Aken B, Beiki H, Bickhart DM, Billis K, et al. An improved 
pig reference genome sequence to enable pig genetics and genomics 
research. bioRxiv. 2019:668921.

	64.	 Ma KC, Mortimer TD, Duckett MA, Hicks AL, Wheeler NE, Sánchez-Busó 
L, Grad YH. Aligning sequence reads, clone sequences and assembly 
contigs with BWA-MEM. arXiv preprint arXiv:13033997 2020.

	65.	 Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der 
Auwera GA, et al. Scaling accurate genetic variant discovery to tens of 
thousands of samples. BioRxiv. 2018;201178.

	66.	 Loh PR, Danecek P, Palamara PF, Fuchsberger C, Reshef YA, Finucane HK, 
et al. Reference-based phasing using the haplotype reference consor-
tium panel. Nat Genet. 2016;48(11):1443–8.

	67.	 Mesbah-Uddin M, Guldbrandtsen B, Lund MS, Boichard D, Sahana G. Joint 
imputation of whole-genome sequence variants and large chromosomal 
deletions in cattle. J Dairy Sci. 2019;102(12):11193–206.

	68.	 Browning SR, Browning BL. Rapid and accurate haplotype phasing and 
missing-data inference for whole-genome association studies by use of 
localized haplotype clustering. Am J Hum Genet. 2007;81(5):1084–97.

	69.	 Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method 
for thousands of genomes. Nat Methods. 2011;9(2):179–81.

	70.	 Fuchsberger C, Abecasis GR, Hinds DA. minimac2: faster genotype impu-
tation. Bioinformatics. 2015;31(5):782–4.

	71.	 Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide 
complex trait analysis. Am J Hum Genet. 2011;88(1):76–82.

	72.	 Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, 
et al. Association analyses of 249,796 individuals reveal 18 new loci asso-
ciated with body mass index. Nat Genet. 2010;42(11):937–48.

	73.	 Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, et al. Ensembl 
2013. Nucleic Acids Res. 2013;41(Database issue):D48–55.

	74.	 McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The 
ensembl variant effect predictor. Genome Biol. 2016;17(1):122.

	75.	 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illu-
mina sequence data. Bioinformatics. 2014;30(15):2114–20.

	76.	 Patro R, Duggal G, Kingsford C. Salmon: accurate, versatile and ultrafast 
quantification from RNA-seq data using lightweight-alignment. Biorxiv. 
2015;021592.

	77.	 Love MI, Huber W, Anders S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Large-scale association study on daily weight gain in pigs reveals overlap of genetic factors for growth in humans
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Results
	Imputation to WGS level
	Association analysis for average daily gain in Duroc
	Association analysis of average daily gain in Landrace
	Association analysis of average daily gain in Yorkshire
	Multi-breed meta-analysis of average daily gain of three breeds
	Post-GWAS analyses
	Overlap with the associations reported for human growth-related traits

	Discussion
	Conclusions
	Methods
	Animals and phenotype
	Genotyping and whole-genome resequencing
	Low- to medium-density SNP genotyping
	High-density (HD) SNP array
	Whole-genome resequencing
	SNP map position

	Genotype imputation
	Association analysis and meta-analysis
	Post-GWAS analysis
	Differentially expressed gene analysis
	Validation with GWAS catalogue of human height, obesity, and body mass index

	Acknowledgments
	References


